Data sheet

Radiators

The diagram shows the plan of a bungalow.
The dimensions of the rooms and the ceiling height are given.

South

Choosing a radiator

To work out the size of a radiator, in kilowatts (kw), needed to heat a room, use the formula

Number of kw $=$ volume of room $\times 0.04$
For example for a room $3 m \times 4 m \times 2.5 m$ high
no. of $k w=3 \times 4 \times 2.5 \times 0.04$

$$
=1.2
$$

If a room has a north facing outer wall then increase the result by 25%

Radiators come in different sizes.
The table shows some radiators and their product codes.

$$
1 \mathrm{kw}=1000 \mathrm{watts}
$$

	Product Code	Size H x W	Heat output
	055 s	$500 \times 500 \mathrm{~mm}$ single	399 watts
	065 s	$600 \times 500 \mathrm{~mm}$ single	461 watts
	068 s	$600 \times 800 \mathrm{~mm}$ single	738 watts
	065d	$600 \times 500 \mathrm{~mm}$ double	858 watts
	067 d	$600 \times 700 \mathrm{~mm}$ double	1200 watts
	510 d	$500 \times 1000 \mathrm{~mm}$ double	1476 watts
	612 d	$600 \times 1200 \mathrm{~mm}$ double	2058 watts
			978 watts

Questions

Radiators

1
(a) Use the formula to work out how many kilowatts of heat Bedroom 1 requires.

Bedroom 1 kw
(b) How many more kilowatts of heat does Bedroom 2 require compared to bedroom 1?
kw

The volume of the kitchen is $24.192 \mathrm{~m}^{3}$
Give the product code of the radiator that is the most sensible choice for the kitchen.

3

To save space in the kitchen, a householder wants one large radiator in the living room to heat both the kitchen and the living room.

The heating requirement of both rooms together is approximately 3200 watts.
She wants to use a $\mathbf{6 0 0} \mathbf{m m}$ high double radiator.
Radiators can be made in widths that come in 100 mm units.
Estimate the width of radiator she needs for the kitchen and living room together.

